domingo, 31 de enero de 2010

Telescopio y Microescopio

TELESCOPIO

El parámetro más importante de un telescopio es el diámetro de su "lente objetivo". Un telescopio de aficionado generalmente tiene entre 76 y 150 mm de diámetro y permite observar algunos detalles planetarios y muchísimos objetos del cielo profundo (cúmulos, nebulosas y algunas galaxias). Los telescopios que superan los 200 mm de diámetro permiten ver detalles lunares finos, detalles planetarios importantes y una gran cantidad de cúmulos, nebulosas y galaxias brillantes.
Para caracterizar un telescopio y utilizarlo se emplean una serie de parámetros y accesorios:
Distancia focal: es la longitud focal del telescopio, que se define como la distancia desde el espejo o la lente principal hasta el foco o punto donde se sitúa el ocular.
Diámetro del objetivo: diámetro del espejo o lente primaria del telescopio.

Ocular: accesorio pequeño que colocado en el foco del telescopio permite magnificar la imagen de los objetos.

Lente de Barlow: lente que generalmente duplica o triplica los aumentos del ocular cuando se observan los astros.

Filtro: pequeño accesorio que generalmente opaca la imagen del astro pero que dependiendo de su color y material permite mejorar la observación. Se ubica delante del ocular, y los más usados son el lunar (verde-azulado, mejora el contraste en la observación de nuestro satélite), y el solar, con gran poder de absorción de la luz del Sol para no lesionar la retina del ojo.

Razón Focal: es el cociente entre la distancia focal (mm) y el diámetro (mm). (f/ratio)
Magnitud límite: es la magnitud máxima que teóricamente puede observarse con un telescopio dado, en condiciones de observación ideales. La fórmula para su cálculo es: m(límite) = 6,8 + 5log(D) (siendo D el diámetro en centímetros de la lente o el espejo del telescopio).

Aumentos: La cantidad de veces que un instrumento multiplica el diámetro aparente de los objetos observados. Equivale a la relación entre la longitud focal del telescopio y la longitud focal del ocular (DF/df). Por ejemplo, un telescopio de 1000 mm de distancia focal, con un ocular de 10mm de df. proporcionará un aumento de 100 (se expresa también como 100X).

Trípode: conjunto de tres patas generalmente metálicas que le dan soporte y estabilidad al telescopio.

Portaocular: orificio donde se colocan el ocular, reductores o multiplicadores de focal (p.ej lentes de Barlow) o fotográficas.

Microescopio

1 * Ocular: lente situada cerca del ojo del observador. Capta y amplia la imagen formada en los objetivos.

2 * Objetivo: lente situada cerca de la preparación. Amplía la imagen de ésta. lo que significa que es muy importante este elemento del microscopio,es un elemento vital que permite ver a traves de los oculares

3 * Condensador: lente que concentra los rayos luminosos sobre la preparación.

4 * Diafragma: regula la cantidad de luz que entra en el condensador.

5 * Foco: dirige los rayos luminosos hacia el condensador.

6 * Tubo: es una cámara oscura unida al brazo mediante una cremallera.

7 * Revólver: Es un sistema que coge los objetivos, y que rota para utilizar un objetivo u otro.

8 * Tornillos macro y micrométrico: Son tornillos de enfoque, mueven la platina hacia arriba y hacia abajo. El macrométrico lo hace de forma rápida y el micrométrico de forma lenta. Llevan incorporado un mando de bloqueo que fija la platina a una determinada altura.

9 * Platina: Es una plataforma horizontal con un orificio central, sobre el que se coloca la preparación, que permite el paso de los rayos procedentes de la fuente de iluminación situada por debajo. Dos pinzas sirven para retener el portaobjetos sobre la platina y un sistema de cremallera guiado por dos tornillos de desplazamiento permite mover la preparación de delante hacia atrás o de izquierda a derecha y viceversa.

miércoles, 20 de enero de 2010

Teoria Cuántica

Efecto Fotoelectrico

El efecto fotoeléctrico consiste en la emisión de electrones por un material cuando se le ilumina con radiación electromagnética (luz visible o ultravioleta, en general). A veces se incluyen en el término otros tipos de interacción entre la luz y la materia:
Fotoconductividad: es el aumento de la conductividad eléctrica de la materia o en diodos provocada por la luz. Descubierta por Willoughby Smith en el selenio hacia la mitad del siglo XIX.


  • Efecto fotovoltaico: transformación parcial de la energía luminosa en energía eléctrica. La primera célula solar fue fabricada por Charles Fritts en 1884. Estaba formada por selenio recubierto de una fina capa de oro.


  • El efecto fotoeléctrico fue descubierto y descrito por Heinrich Hertz en 1887. La explicación teórica solo fue hecha por Albert Einstein en 1905 quien basó su formulación de la fotoelectricidad en una extensión del trabajo sobre los cuantos de Max Planck. Más tarde Robert Andrews Millikan pasó diez años experimentando para demostrar que la teoría de Einstein no era correcta, para finalmente concluir que sí lo era. Eso permitió que Einstein y Millikan compartiesen el premio Nobel en 1921 y 1923 respectivamente.



Principio de icertidumbre de Heisenberg:



En mecánica cuántica, la relación de indeterminación de Heisenberg o principio de incertidumbre afirma que no se puede determinar, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, por ejemplo, la posición y el momento lineal (cantidad de movimiento) de un objeto dado. En otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su cantidad de movimiento lineal y, por tanto, su velocidad. Esto implica que las partículas, en su movimiento, no tienen asociada una trayectoria bien definida. Este principio fue enunciado por Werner Heisenberg en 1927.



Escuela de Copenhague

Nombre que se da a un grupo de físicos (Bohr, Heisenberg, Weizsäcker, Jordan y otros) que se atienen a una interpretación positivista de los problemas filosóficos de la mecánica cuántica. El grupo se formó a fines de la década de 1920 en Copenhague, en el Instituto de Física Teórica, dirigido por Bohr. A varios físicos de dicha escuela, ante todo a Bohr y a Heisenberg, les corresponden grandes méritos en la formación y desarrollo de la mecánica cuántica, en la interpretación de sus elementos matemáticos y de los datos experimentales. Sin embargo, en la posición filosófica de esta escuela, en sus formulaciones subjetivistas, ante todo de su primera época se percibe una gran influencia del [88] neopositivismo. Algunos representantes de la escuela, concibiendo erróneamente el papel del instrumento en el microcosmo como «perturbación incontrolable» hablaban de la «quiebra de la causalidad», del «libre albedrío» del electrón, &c. Tales concepciones han sido sometidas a crítica por parte de físicos soviéticos (Serguéi Vavílov, Vladímir Fok, Dmitri Blojintsev, &c.) y de otros países (Einstein, Langevin, &c.). Actualmente, la escuela de Copenhague no constituye un todo íntegro. Si Jordan y Weizsäcker mantienen sus viejas concepciones positivistas, Heisenberg se inclina hacia el idealismo objetivo y Bohr se aproximó a la concepción materialista en varios problemas filosóficos de la mecánica cuántica.

martes, 12 de enero de 2010

Espectro electromagnético

Se denomina espectro electromagnético a la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden observar mediante espectroscopios que, además de permitir observar el espectro, permiten realizar medidas sobre éste, como la longitud de onda, la frecuencia y la intensidad de la radiación.
El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite para la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo (véase Cosmología física) aunque formalmente el espectro electromagnético es infinito y continuo.
Ondas radio:
  • UHF (siglas del inglés: Ultra High Frequency, frecuencia ultra alta) es una banda del espectro electromagnético que ocupa el rango de frecuencias de 300 MHz a 3 GHz. En esta banda se produce la propagación por onda espacial troposférica, con una atenuación adicional máxima de 1 dB si existe despejamiento de la primera zona de Fresnel.
  • VHF (Very High Frequency) es la banda del espectro electromagnético que ocupa el rango de frecuencias de 30 MHz a 300 MHz

Microondas:

Se denomina microondas a las ondas electromagnéticas definidas en un rango de frecuencias determinado; generalmente de entre 300 MHz y 300 GHz, que supone un período de oscilación de 3 ns (3×10-9 s) a 3 ps (3×10-12 s) y una longitud de onda en el rango de 1 m a 1 mm.

Infrarrojo:

Las ondas infrarrojas están en el rango de 0,7 a 100 micrómetros. La radiación infrarroja se asocia generalmente con el calor. Éstas son producidas por cuerpos que generan calor, aunque a veces pueden ser generadas por algunos diodos emisores de luz y algunos láseres.
Las señales son usadas para algunos sistemas especiales de comunicaciones, como en astronomía para detectar estrellas y otros cuerpos y para guías en armas, en los que se usan detectores de calor para descubrir cuerpos móviles en la oscuridad. También se usan en los controles remotos de los televisores, en los que un transmisor de estas ondas envía una señal codificada al receptor del televisor. En últimas fechas se ha estado implementando conexiones de área local LAN por medio de dispositivos que trabajan con infrarrojos, pero debido a los nuevos estándares de comunicación estas conexiones han perdido su versatilidad.

Luz visible:

Por encima de la frecuencia de las radiaciones infrarrojas tenemos lo que comúnmente llamamos luz. Es un tipo especial de radiación electromagnética que tiene una longitud de onda en el intervalo de 0,4 a 0,8 micrómetros. La unidad usual para expresar las longitudes de onda es el Angstrom. Los intervalos van desde los 8.000 Å(rojo) hasta los 4.000 Å (violeta), donde la onda más corta es la del color violeta.
La luz puede usarse para diferentes tipos de comunicaciones. Las ondas de luz pueden modularse y transmitirse a través de fibras ópticas, lo cual representa una ventaja pues con su alta frecuencia es capaz de llevar más información.
Por otro lado, las ondas de luz pueden transmitirse en el espacio libre, usando un haz visible de láser.

Rayos X:

La denominación rayos X designa a una radiación electromagnética, invisible, capaz de atravesar cuerpos opacos y de impresionar las películas fotográficas. La longitud de onda está entre 10 a 0,1 nanómetros, correspondiendo a frecuencias en el rango de 30 a 3.000 PHz (de 50 a 5.000 veces la frecuencia de la luz visible).